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We construct two families of self-similar solutions of the Boltzmann equation in
an explicit form. They turn out to be eternal and positive. They do not possess
finite energy. Asymptotic properties of the solutions are also studied.
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1. INTRODUCTION

We consider a class of solutions of the Boltzmann equation which can be
constructed starting from a rather peculiar, self-similar solution with infi-
nite energy. In the particular case of Maxwell molecules, a similar problem
was considered 25 years ago when Bobylev (1) constructed self-similar solu-
tions with finite energy (obeying the same equation as our solution, but
with positive rather than negative values of a certain parameter l). Several
authors (see refs. 2 and 3 for a review) considered these solutions in more
detail and finally it was proved by Barnsley and Cornille (4) (for the simplest
case) that all these solutions, except the so-called ‘‘BKW-mode,’’ do not
correspond to positive distribution functions. Thus the solutions do not
appear to be useful for applications.
We were led to considering these solutions again (but for l < 0) by the

interesting question of extending the solution for the structure of an infini-
tely strong shock wave from the case of hard spheres (or cutoff poten-
tials) (5–7) to that of molecules interacting at distance. This connection will
be discussed in a forthcoming paper, (8) together with other aspects of the
problem of finding similarity solutions.



The goal of this paper is to present some of the solutions in an explicit
form. The paper is organized as follows. In Section 2 we define these solu-
tions and in Section 3 we indicate how to obtain them in the case of pseudo-
Maxwell molecules with isotropic scattering. In Section 4 we obtain our
first example of exact solution and show its positivity, at variance with the
previous case of positive l. We also show that the solution is eternal, i.e., it
exists from t=−. to t=+.. We recall that a recent conjecture states that
the only eternal solutions of the Boltzmann equation are Maxwellians. (9) In
Section 5 we obtain another eternal, positive solution, study its asymptotics
and discuss possible generalizations.
Multiplying any solution in the Fourier space by a Maxwellian, we

obtain a family of eternal solutions which tend to this Maxwellian at
t=−.. This also makes the distribution function infinitely smooth. Thus
our two self-similar solutions originate two one-parameter families of solu-
tions of this kind.

2. THE EQUATION FOR SELF-SIMILAR SOLUTIONS

Let f(v, t) (where v ¥R3 and t ¥R+ are the velocity and time
variables) be a distribution function satisfying the homogeneous Boltzmann
equation for Maxwell’s molecules:

ft=F
R
3×S2
dw dn g 1V ·n

|V|
2[f(vŒ) f(wŒ)−f(v) f(w)] (2.1)

where

V=v−w, vŒ=1
2(v+w+|V| n), wŒ=1

2(v+w−|V| n), n ¥ S2

and g(cos h) denotes the scattering cross section multiplied by |V|. For
simplicity we do not indicate the time dependence in the collision term.
Performing the Fourier transform

f̂(k)=F
R
3
dv f(v) e−ik · v, k ¥R3 (2.2)

we obtain (3)

f̂t=F
S2
dn g 1k ·n

|k|
2[f̂(k+) f̂(k−)− f̂(0) f̂(k)] (2.3)
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where

k±=1
2(k±|k| n), n ¥ S2

We consider the simplest class of solutions

f̂(v, t)=f(x, t), x=|k|2/2 (2.4)

corresponding to isotropic distribution functions f(t, |v|) in (2.1). Then the
equation for f(x, t) reads

ft=F
1

0
ds G(s)[f(sx) f((1−s) x)−f(0) f(x)] (2.5)

where

G(s)=4pg(1−2s), 0 [ s [ 1 (2.6)

Equation (2.5) has the following relevant properties:

(A) mass and energy conservation laws

d
dt
f(0, t)=

d
dt
fŒ(0, t)=0 (2.7)

where the prime denotes differentiation with respect to x;

(B) invariance under the transformations

f̃(x, t)=e−axf(bx, t+c) (2.8)

Two essentially different cases may be considered. In the first case (the
usual one) the solutions have a finite energy:

fŒ(0, t)=1
3 F

R
3
dv f(v) |v|2 <. (2.9)

In the second case the solutions have infinite energy:

fŒ(0, t)=1
3 F

R
3
dv f(v) |v|2=. (2.10)

We remark that all the terms in the Boltzmann equation (2.1) are well
defined for both cases; energy conservation, however, does not make sense
in the second case.
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Equation (2.3) obviously admits a class of self-similar solutions

f̂(k, t)=F̂(ke−lt), l=const. (2.11)

formally corresponding to a class of functions

f(v, t)=e3ltF(velt) (2.12)

satisfying the Boltzmann equation (2.1). These solutions contradict energy
conservation since formally

F
R
3
dv f(v, t) |v|2=e−2lt F

R
3
dv F(v) |v|2 ] const. (2.13)

The contradiction, however, disappears in two cases:

(1) F
R
3
dv f(v) |v|2=0, or (2) F

R
3
dv f(v) |v|2=. (2.14)

The first case obviously corresponds to ‘non-physical’ solutions (except for
a trivial solution F=d(v)) since it violates the positivity condition, f \ 0.
This does not mean that the self-similar solutions (2.11) are useless. One
can easily extend a solution of the class (2.11) to a two-parameter family of
solutions (for each admissible value of l):

f̂a, l(k, t)=e−a |k|
2
F̂(bke−lt) (2.15)

where the parameter b is not indicated as a label because it is usually taken
to be unity, without much loss of generality. This function is associated
with a positive energy, provided a > 0. Moreover it describes the relaxation
to a Maxwellian distribution as tQ., provided l > 0 and F(0) > 0. Solu-
tions of this kind were first considered by one of the authors. (1) It is well-
known that the simplest solution of the form (2.15) is given by

F̂(k)=(1+12 |k|
2) e−

1
2
|k|2 (2.16)

with

l=
p

4
F
1

−1
dm g(m)(1−m2) (2.17)

Then the corresponding distribution function (inverse Fourier transform)

f1/2, l(v, t)=(2pG)−3/2 e−|v|
2/(2G)51+1−G

3G
1 |v|2
G
−326 , G=1−e−lt

(2.18)
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is positive for sufficiently large t. This solution was first found in 1968 by
Krupp, (10) who unfortunately never published his results. Therefore the
solution was rediscovered independently by one of the authors (11) and by
Krook and Wu (12) and first published in the years 1975–1976. This solution
still remains the only known explicit solution for the Boltzmann equation.
It is also known that there exists a countable set of positive values l

in (2.15) corresponding to entire analytic functions F̂(|k|2) such that
|F̂(|k|2)| [ A exp(B |k|2), for some A, B > 0. (1, 3) Then the equality (2.15)
with a > B leads to a true solution of the Boltzmann equation (2.1). It was
never proved, however, that the corresponding ‘‘distribution functions’’
fa, l(v, t) are positive; rather, some examples show that this is not the case
(see the review papers of refs. 2–4 for details). However, as we shall see
below, these positive solutions do exist for negative values of l. Moreover,
some of the solutions can be constructed in an explicit form.

3. THE SPECIAL CASE g(m)=CONST.: USE OF THE LAPLACE

TRANSFORM

Our aim in this case is to consider the case l < 0 in (2.11), (2.12) and
construct some new explicit solutions for the particular case g=const. in
(2.1) (pseudo-Maxwell molecules with isotropic scattering law). Without
any loss of generality, we assume G(s)=1, f(0)=1 in Eq. (2.5) and look
for the self-similar solutions:

f(x, t)=k(xe−at), k(0)=1, a=2l (3.1)

Then the equation for k(x) reads:

−axkx=
1
x
F
x

0
dy k(y) k(x−y)−k(x) (3.2)

If we assume that

k(x)=1+O(xh), h > 0, xQ 0 (3.3)

then

a=a(h)=
h−1
h(1+h)

(3.4)

One can easily verify that Eq. (3.1) has a special solution (see (2.16))

k(x)=(1+cx) e−cx, c=const. (3.5)
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corresponding to the degenerate ‘‘eigenvalue’’ (3.4)

a(2)=a(3)=1
6 (3.6)

Equation (3.2) can be obviously simplified by using the Laplace trans-
form

u(z)=F
.

0
dx k(x) e−zx (3.7)

satisfying:

−a(h)(zu)œ−uŒ=u2, zu(z)QzQ. 1 (3.8)

or, equivalently, in terms of y=zu(z):

−a(h) z2yœ−zyŒ+y(1−y)=0, y(z)QzQ. 1 (3.9)

It is convenient to denote a solution of (3.9) by

y=y(z; h), a=a(h)=
h−1
h(1+h)

(3.10)

Eq. (3.9) is obviously invariant under the scaling transformation zQ cz,
c=const. It admits, however, another class of invariance under a trans-
formation connecting solutions with different value of h, as shown by the
following

Lemma 3.1. If y(z; h) is a solution of Eq. (3.9) with h > 1, then a
solution Y(z; h̃) of the same equation with h̃ < 1 is given by

Y 1z; 1
h
2=1−y(z−h; h) (3.11)

Proof. Let us transform both the dependent and independent variables
in (3.9)

Y=1−y, t=za

A short, elementary calculation leads to

−bt2Y"−tYŒ+Y(1−Y)=0
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where

a=
1+a
a(1−a)

, b=−aa2=−
a(1+a)
1−a

Then if a(h) is given by (3.4), we have

a=−h, b=−a(h) h2=a 11
h
2

and the lemma is proved, because we have connected a solution corre-
sponding to a certain value of h to another associated with 1/h. We remark
that a changes sign in the transformation.
We now apply the lemma to the Laplace transform of (3.5) with

c=−1. Then

y(z; 2)=y(z; 3)=
z
z+1
+

z
(z+1)2

=1−
1

(1+z)2

in agreement with (3.5)–(3.10), and

Y 1z; 1
2
2= 1
(1+z−1/2)2

, a=−
2
3
; (3.12)

Y 1z; 1
3
2= 1
(1+z−1/3)2

, a=−
3
2

(3.13)

Thus we found two new exact solutions to Eq. (3.8). The next step is
to investigate the corresponding solutions of the Boltzmann equation.

4. THE FIRST EXACT SOLUTION

The function in (3.12) yields

u(z)=
1

z(1+z−1/2)2
=
1
z
C
.

0
(−1)n

n+1
zn/2

Hence we obtain the following solution of Eq. (3.2) with a=−2/3:

k(z)=C
.

0
(−1)n

n+1
C(n/2+1)

xn/2
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In fact by Laplace-transforming this series term by term we obtain the
previous one for |z| > 1, and the result follows for any z ] 0 (with −p <
arg z < p) by analytic continuation.
Since x=|k|2/2, we get

f̂(|k|)=C
.

0
(−1)n

(n+1)
C(n/2+1)

1 |k|
`2
2n

=11+k ·
“

“k
25exp 1 |k|

2

2
2−C

.

0

|k|2n+1

2n+1/2C(n+3/2)
6

Two formulas from the handbook by Gradshtein and Ryzhik, (13) pp. 938
and 931, i.e.,

C(n+3/2)=
`p

2n+1
(2n+1)!!

F(t)=
2

`p
F
t

0
e−x

2
dx=

2

`p
e−t

2
C
.

0

2n|t|2n+1

(2n+1)!!

lead to

C
.

0

|k|2n+1

2n+1/2C(n+3/2)
=e

|k|2

2 F 1 |k|
`2
2

Since F(.)=1, we obtain

f̂(|k|)=11+k ·
“

“k
2 =2
p
F
.

|k|
ds e−

1
2
(s2− |k|2)

==2
p
5−|k|+(1+|k|2) F.

|k|
ds e−

1
2
(s2− |k|2)6

==2
p
F
.

|k|

ds
s2
(s2−|k|2) e−

1
2
(s2− |k|2)

Finally, the change of variables sQ (s2+|k|2)1/2 gives:

f̂(|k|)==2
p
F
.

0

ds s3e−s
2/2

(s2+|k|2)3/2
(4.1)
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We can now use a well-known representation of the modified Bessel func-
tion (ref. 13, p. 959),

K0(sr)=F
.

0

dt cos tr
(t2+s2)1/2

=
1
r
F
.

0

dt t sin tr
(t2+s2)3/2

in order to invert the Fourier transform f̂(|k|) given by (4.1). The distribu-
tion function f=f(|v|) is given by

f(r)=
1
(2p)3

F
R
3
dk f̂(|k|) e ik · v=

1
2p2r

F
.

0
dt f̂(t) t sin(tr)

=
1

(2p5)1/2
F
.

0
ds s3e−s

2/2K0(sr), r=|v|

Another representation of K0(z) (ref. 13, p. 959),

K0(z)=
1
2
F
.

0

dt
t
exp 1−t−z

2

4t
2

leads to

f(r)=2−3/2p−5/2 F
.

0

dt
t
e−t F

.

0
ds s3e−

s2

2
(1+r

2

2t
)=(2p5)−1/2 F

.

0

dt te−t

(t+r
2

2)
2

Thus we constructed an exact positive solution of the Boltzmann equation
(2.1) with g(m)=(4p)−1. The solution is given by

f(v, t)=e−tF(ve−t/3) (4.2)

where F is given by

F(v)=(2p5)−1/2 F
.

0

dt te−t

(t+r
2

2)
2

=(2p5)−1/2 5−1+11+|v|
2

2
2 e |v|2/2 F.

|v|2/2

ds e−s

s
6

The solution is expressed explicitly through elementary functions and the
integral exponential function

Ei(−x)=−F
.

x

ds e−s

s
, x > 0
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The asymptotic formulas (ref. 13, p. 927)

Ei(−x)=c+log x+C
.

0

(−x)n

k ·k!
(c=EulerŒs constant)

Ei(−x)=e−x 3C
n

0

(k−1)!
(−x)k

+Rn 4 , |Rn | <
n!
xn
, x > 0

lead to similar series for F(v). In particular:

F(v) 5 1p
5

2
2 2−1/2 log 1

|v|
, |v|Q 0

F(v) 5
1
2
12
p
25/2 |v|−4, |v|Q.

The corresponding self-similar solution (4.2) exists for all t ¥R, i.e., it
is an example of eternal solution, (9, 14, 15) having the following asymptotic
behavior

f(v, t) 5 1p
5

2
2−1/2 e−t 5 t

3
+log

1
|v|
− (c+1)+O(e−

2
3
t)6 , tQ+., |v| > 0

f(v, t) 5
1
2
12
p
25/2 e−|t|/3

|v|4
[1+O(e−

2
3
|t|)], tQ −., |v| > 0

In the weak sense (on test functions of finite support)

f(v, t)QtQ+. 0 and f(v, t)QtQ −. d(v)

It is clear that this asymptotics for tQ+. is possible only because the
corresponding energy (second moment of f(v, t)) is infinitely large.
Finally we remark that the functions

fa(v, t)=f f (2pa)−3/2 e−|v|
2/(2a), a > 0

where f denotes the convolution in R3, constitute a one-parameter family
of smooth eternal solutions of the Boltzmann equation (2.1), so that the
logarithmic singularity of F(v) at v=0 is not so important.
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5. THE SECOND EXACT SOLUTION AND GENERALIZATIONS

Let us consider the second function (3.13). Then

u(z)=F
.

0
dx k(x) e−zx=

1
z(1+z−1/3)2

=
1
z
C
.

0
(−1)n

n+1
zn/3
, a=2l=−

3
2

where k(x) is the solution of Eq. (3.2). By inverting the Laplace transform,
we obtain:

k(x)=C
.

0
(−1)n

n+1
C(1+n/3)

xn/3

The corresponding solution of the Boltzmann equation (2.1) (provided
it exists) reads

f(v, t)=e−
9
4
tF(ve−

3
4
t) (5.1)

where

F
R
3
dv F(v) e−ik · v=k 1 |k|

2

2
2 (5.2)

Our main goal in this section is to invert the Fourier transform and
to prove that F(v) \ 0. To this end we consider a slightly more general
problem.
It is obvious that by applying the original method (3) to the

d-dimensional Boltzmann equation (d \ 2) we obtain the same Fourier-
transformed Boltzmann equation (2.3) with trivial changes (R3

QRd and
S2Q Sd−1). Moreover the function g(cos h) can be always chosen in such a
way that leads to the same isotropic equation (2.5) with r(s)=1. (2) Hence
it is worthwhile to consider the inverse Fourier transform in the general
d-dimensional case (d=2, 3,...) in order to describe a class of exact solu-
tion of the generalized Boltzmann equation.
On the other hand, the characteristic functions k(|k|2/2) for both the

solution investigated here and the one studied in the previous section can
be written in a similar way:

k1 |k|
2

2
2=1 1

2a
k ·
“

“k
+12 Qa 1

|k|2

2
2 , a=

1
2
,
1
3

where

Qa(x)=C
.

0

(−1)n

C(1+na)
xna=L−1 z

a−1

1+za
(5.3)
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is the so-called Mittag–Leffler function. (16) Hence the unknown distribution
function F(v) (5.2) reads

Fa=F−1[k]=11− 1
2a
“

“v
· v2F−1 5Qa 1

|k|2

2
26

whereF−1 denotes the inverse Fourier transform. If v ¥Rd then

“

“v
· v=d+v ·

“

“v

therefore

Fa=511−
d
2a
2− 1
2a

v ·
“

“v
6F−1[Qa], d=2, 3,... (5.4)

in the general case. Thus we need to evaluate the integral

F−1[Qa]=Fa=
1
(2p)d

F
R
d
dk Qa 1

|k|2

2
2 e ik · v (5.5)

A key idea is the following. It is well known in probability theory (16) that
for any 0 < a < 1 there exists a non-negative function ga(x), x \ 0, such
that

L[ga]=F
.

0
dx ga(x) e−zx=e−z

a

(5.6)

This function can be used for the following integral representation of Qa,
defined in (5.3):

Qa(x)=F
.

0
dy ga(y) e−(x/y)

a

(5.7)

This formula is a consequence of comparing (5.3) (which provides the
Laplace transform of Qa) with the following formula:

F
.

0
dx e−zx F

.

0
dy ga(y) e−(x/y)

a

=F
.

0
dt e−t

a

F
.

0
dy yga(y) e−zty

=a F
.

0
dt e−t

a

(zt)a−1 e−(zt)
a

=
za−1

1+za
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which indicates that the last expression is the Laplace transform of the
right hand side of (5.7). Here (5.6) (differentiated with respect to z) has
been used.
Equalities (5.6) and (5.7) lead to another integral representation

Qa(x)=F
.

0
dy ga(y) F

.

0
dz ga(z) e−x(z/y) (5.8)

which is very convenient to evaluate the inverse Fourier transform (5.5)
since

(2pG)−d/2 e−|v|
2/(2G)=

1
(2p)d

F
R
d
dk e−G |k|

2/2+ik · v, G > 0, v ¥Rd

Hence, taking the Fourier transform of (5.8), with x=|k|2/2 and using the
last relation with G=z/y gives

Fa(v)=F−1[Qa]

=
1

(2p)d/2
F
.

0
F
.

0
dy dz 1y

z
2d/2ga(y) ga(z) e−u(y/z), u=|v|2/2 (5.9)

The double integral can be easily simplified in the case of an even number
of dimensions, d=2n, n=1, 2,... . In fact, differentiating (5.8) n times, we
obtain:

Fa(v)=F̃a(u)=
1
(2p)n
1 d
du
2n Qa(u), u=|v|2/2

Then Eq. (5.4) leads to

Fa(v)=F̃a(u)=
(−1)n+1

(2p)na
5(n−a)+u d

du
6 Q (n)a (u)

=
(−1)n+1

(2p)na
u1+a−n

d
du
[un−aQ (n)a (u)]

where Q (n)a (u) denotes the nth derivative (n=1, 2,...). In the plane case
(n=1, d=2), which may be of practical interest, we obtain from (5.7)

Q (1)a (u)=−au
a−1 F

.

0
dy ga(y) y−ae−(u/y)

a
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Therefore the distribution function is given by

F̃a(u)=−
ua

2p
d
du

F
.

0
dy ga(y) y−ae−(u/y)

a

=
a

2p
u2a−1 F

.

0
dy ga(y) y−2ae−(u/y)

a

, u=|v|2/2 (5.10)

where a=1/2 or 1/3 yields the positive solution

fa(v, t)=e−2latF̃a 1
|v|2

2
e−2lat2 (5.11)

with l1/2=1/3 or l1/3=3/4 respectively.

Remark. The results for the plane case could be obtained even more
easily. Our approach, however, allows a proof of positivity and works for
an arbitrary dimension. It is easy to guess that the explicit solution
obtained in Section 4 is connected with the fact that the function

g1/2=
1

2`p
x−3/2e−1/(4x) (5.12)

is known in an explicit form. (17) The function g1/3 is much more com-
plicated.
We shall show that the corresponding solution for the 3d Boltzmann

equation (2.1) is also positive and give formulas for its asymptotic behavior.
Let us consider Eq. (5.9) with d=3. It is convenient to work with an

arbitrary a (0 < a < 1) in order to see the difference between the two cases
a=1/2 (first solution) and a=1/3 (second solution). We denote again

Fa(v)=F̃a 1
|v|2

2
2 (5.13)

and omit tildes below. Eqs. (5.4) and (5.9) with d=3 yield

Fa(u)==
ua−1/2

(2p)3/2 a
d
du
5u3/2−a dIa(u)

du
6 (5.14)

where

Ia=F
.

0
dy ga(y) F

.

0
dz ga(z)1

y
z
21/2 e−u(y/z)
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Noting that

`r=
1

2C(1/2)
F
.

0

ds
s3/2
[1−e−rs], r=

y
z
, C 11

2
2=`p

and using (5.8) we obtain

Ia=
1

2C(1/2)
F
.

0

ds
s3/2
[Qa(u)−Qa(s+u)]

=−
1

C(1/2)
F
.

0

ds

`s
Q −a(s+u)

or, equivalently,

Ia=
aua−1/2

C(1/2)
F
.

0

ds(1+s)a−1

`s
F
.

0
dy ga(y) y−ae−[u(1+s)/y]

a

=
ua−1/2

C(1/2)
F
.

1

dt

`t1/a−1
F
.

0
dy ga(y) y−ae−t[u/y]

a

where we let t=(1+s)a. Then we transform Eq. (5.14) to

Fa(u)=
ua−1/2

(2p)3/2aC(1/2)
d
du
5u3/2−a d

du
(ua−1/2Ga)6

with

Ga(u)=F
.

0
dy ga(y) y−a F

.

1

dt

`t1/a−1
e−t[u/y]

a

(5.15)

The function Fa(u) depends on G
−

a only, since

Fa(u)=
ua−1/2

(2p)3/2 aC(1/2)
51a+1

2
2+u d

du
6 dGa
du

=
1

(2p)3/2 aC(1/2)
d
du
1ua+1/2 dGa

du
2
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Differentiation of Eq. (5.15) yields

G −a(u)=−au
a−1 F

.

0
dy ga(y) y−2a F

.

1

dt t

`t1/a−1
e−t[u/y]

a

=−au−(a+1/2) F
.

0

dy ga(y)

`y
F
.

(u/y)a

ds s1−1/(2a)e−s

`1−(uy) s
−1/a

Therefore we obtain

Fa(u)=−
1

(2p)3/2C(1/2)
d
du

F
.

0

dy ga(y)

`y
Ra 1

ua

ya
2

with

Ra(G)=F
.

G

ds se−s

`s1/a−G1/a

In order to evaluate the derivative appearing in the expression of Fa(u) we
represent Ra(G) as

Ra(G)=2a F
.

G

ds s2−1/ae−s(`s1/a−G1/a)Œ

=2a F
.

G

ds e−s(`s1/a−G1/a)511
a
−22 s1−2/a+s2−1/a6

then

R −a(G)=−G
1/a−1 F

.

G

ds s1−1/ae−s

`s1/a−G1/a
(1/a−2+s)

Finally we obtain

Fa(u)=
1

(2p)3/2C(1/2)
F
.

0

dy ga(y)
y3/2

F
.

ua

ya

ds(1−2a+as) e−s

s1/a−1`s1/a−(u/y)
(5.16)

Thus we proved the following

Lemma 5.1. If Fa(u) (u > 0, 0 < a < 1) is defined by formulas (5.6)
and (5.16), then the following identity holds:

F
R
3
dv Fa 1

|v|2

2
2 e−ik · v=C

.

0
(−1)n

n+1
C(1+na)
1 |k|2
2
2na
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This yields a unified representation of both exact solutions of the
Boltzmann equation (2.1) with g=1/(4p):

fa(v, t)=e−3latFa 1
|v|2

2
e−2lat2

where a=1/2, 1/3 and l1/2=1/3, l1/3=3/4. The formula (5.16) clearly
shows that both solutions are positive. One can easily verify that the case
a=1/2 with g1/2 given by (5.12) leads to the function (4.2) found in
Section 4.
The integral (5.16) has a nontrivial asymptotics for uQ 0. We omit

relatively simple calculations leading to the following results:

(1) If 3/4 < a [ 1, then

Fa(0)=
1
25/2p2

C 12− 3
2a
2 F.
0

dy ga(y)
y3/2

(2) If 0 < a [ 3/4 and a ] 1/2, then

Fa(u) 5uQ 0
(1−2a) u−(3−4a)/2

`2 p2C(1+2a)
F
.

1

ds

s1/a−1`s1/a−1

where we used the formula

F
.

0

dy ga(y)
y2a

=
2

C(1+2a)

which follows from Eqs. (5.3), (5.7).
The intermediate case a=1/2 was studied in Section 4. Thus the

function Fa(u) in (5.16) is positive if and only if 0 < a [ 1/2. In the case
a=1/3 we obtain (notation as in (5.13)):

F1/3(v)=F̃1/3 1
|v|2

2
2 5 |v|Q 0 A |v|−5/3

A=
2−5/3`3

p5/2
C 15
6
2

(5.17)

for the solution (5.1) of the Boltzmann equation.
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Let us now consider the asymptotic behavior of Fa(u) as uQ..
Formula (5.6) shows that

ga 5xQ.
a

C(1−a)
x−(1+a)

On the other hand, Eq. (5.16) can be written as

Fa(u)=
u−1/2

(2p)3/2 C(1/2)
F
.

0

dy ga(u/y)
y1/2

F
.

ya

ds (1−2a+as) e−s

s1/a−1`s1/a−y

Then we obtain

Fa(u) 5uQ. Bau−(a+3/2),

Ba=
a

(2p)3/2 C(1/2) C(1−a)
F
.

0
dy y1/2+a F

.

ya

ds (1−2a+as) e−s

s1/a−1`s1/a−y

=
2−1/2(1+a)
p2C(1−a)

F
.

1

ds s−(2+
1
a
)

`s1/a−1

Thus in the case a=1/3 we get (see Eq. (5.13)):

F1/3(v)=F̃1/3 1
|v|2

2
2 5 |v|Q. B |v|−11/3

B=
5·2−2/3

`3 p5/2
C 15
6
2

for the solution (5.1) of the Boltzmann equation.
According to the remark at the end of Section 4, taking the convolu-

tion in R3 of a solution with an arbitrary Maxwellian produces a one-
parameter family of smooth eternal solutions of the Boltzmann equation
(2.1).

6. CONCLUDING REMARKS

We have constructed two positive, self-similar solutions of the Boltz-
mann equation, which turn out to be eternal. They do not have finite
energy. By convolution with a Maxwellian we can produce two families of
smooth, eternal, positive solution.
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We have insisted on the positivity of these solutions, because it is easy
to give examples of eternal solutions, which are negative in some nonzero
measure set. In particular, the function

f(v, t)=e3ltF(velt) (6.1)

where l is defined by Eq. (2.17) and

F
R
3
dv F(v) e−ik · v=11+|k|

2

2
2 e−|k|

2

2

gives an example of eternal solution having finite moments of any order.
This example holds true for any scattering function g(m) in (2.1). However,

F(v)=(2p)−3/2 e−|v|
2 15− |v|2

2
2 (6.2)

obviously violates the positivity condition. In some sense, the solution
(6.1)–(6.2) describes an asymptotics for tQ −. for a general class of
eternal solutions with all moments finite. Moreover, the solutions obtained
above (generalized to arbitrary Maxwell-type cross-sections) seem to be
asymptotic states (as tQ+.) of initial states with infinite energy. We plan
to consider related questions in a subsequent paper. (8)
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